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Abstract

In this thesis our main interest is focused speci�cally on the dynamics of cellular
automata. Dynamics will be addressed by the invariance of the automaton, and
in some cases invariance will be addressed by its reversibility. Our concept of
invariance will be considered under the set of attractors of the automaton, i.e.
it's periodic con�gurations. This concept suggests to question the robustness
of the automaton, this is, the stability of the behaviour regardless external dis-
turbances, such as di�erent update schedules. This is important in dynamical
systems, in order to determine and prove strong properties that are invariant
under structural modi�cations.

More precisely, we have studied the block invariance and attractor invari-
ance of the elementary cellular automata, Section 3.1 and 3.2 respectively, and
invariance of linear rules with radius 2, Section 4.2. On the one hand, we have
studied 11 conjectures about block invariance, that were previously established
in [7]. We were able to prove 9 of them and refute the other 2 left. Also, for all
256 elementary cellular automata we established equivalences in between them
by means of the con�gurations of their set of attractors. In the case of attractor
invariance we managed to characterize the set of attractor of the elementary
cellular automata rules under sequential update schedules, so to establish equiv-
alences (classes) in between these rules by means of the con�gurations of their
set of attractors. We have proven 2 of these classes, leaving the rest of them
as future work. On the other hand, we were able to characterize the update
schedules for which the linear rules 90 and 150 are invariant, and the same was
done for linear rules with radius 2. The key tool to prove invariance for linear
rules was the study of the reversibility of each rule.

Due to this work we have published two articles, [8, 11].
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