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Abstract

The main goal of this thesis, relies the dynamics of a reversible and con-
servative cellular automaton Q2R model. Q2R is a automaton that runs on a
two-dimensional grid of finite size and is reversible in a physical sense, that is,
not only is the automaton rule invertible, but the backward rule reads exactly
the same as the forward one. This model is a dynamical variation of the Ising
model for ferromagnetism that possesses quite a rich and complex dynamics.

As expected, the Q2R automaton only possesses fixed points and periodic
orbits and it has been shown that possesses an energy like quantity, and, at
least an extra conserved quantity. Although, the dynamics includes only fixed
points and periodic orbits, numerical simulations show that the system ex-
hibits a ferromagnetic phase transition in the large system size limit for a well
defined critical energy.

In the present work, we characterize the configuration space, that is com-
posed of a huge number of cycles with exponentially long periods. More pre-
cisely, we quantify the probability distribution functions of states in terms of
the aforementioned invariants. We show that the dynamics of the system in
the phase space appears to be, depending on the energy, a random walk or a
Levy flight.

The main contribution of the present thesis is the application of a coarse-
graining approach that allows to write a coarse-grained master equation, which
characterizes equilibrium and non equilibrium statistical properties, for the
Q2R model. Following Nicolis and collaborators, a coarse-graining approach
is applied to the time series of the total magnetization, leading to a consistent
master equation that governs the macroscopic irreversible dynamics of the
Q2R automata. The methodology is replicated for various lattice sizes. In the
case of small systems, we show that the master equation leads to a tractable
probability transfer matrix of moderate size, which provides a master equation
for a coarse-grained probability distribution. The method is validated and
some explicit examples are discussed.
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